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Abstract 

This a.r.rde discusses mzppings of data onlo a binary n-cube computer for efficient 
computations of the fast Fourier transform 0. We show that, while the binary n- 
cube is an ideal topology for the FFI' in the sense that the FFl? butterfly data flow 
graph can be mapped into it with no increase in the distance between vertices, the re- 
quired mapping is not the optimal one for other data flow graphs, such as the nearest 
neighbor (NN) mesh. Thus the ideal FFI' mapping may not be the best one to use in 
applications which calls for both FFT and NN computations on a mesh, which is rath- 
er common in many applications. To overcome this difficulty, we propose and 
analyze the use of a special Gray code mapping of the mesh, which in addition to 
preserving the NN property, is also suitable for the FET, increasing the distance 
between vertices by at most one, independent of the size of the data array. We derive 
a model for thq communication cost which can be used to decide which mapping 
minimizes communication arid whether conversion between the two mappings is 
worthwhile for a particular application. Comparison of the model with the timing 
results obtained by Chamberlain on the Intel iPSC will be presented. 

'This work is supp~ned by l e  Research Institute in Advanced Computer Science. NASA Amu Resurch Ccntcr ud the 
Department of Energy under Conma DE AC02 81ER 10996 while h e  author is m sabbatical luvc  from Yale Univasity. C u m  
address: Ibs of Malharutia. UCLA. 405 Hilgard Av., La Angcler. CA 90024. 
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1. lntroduction 

1 

A d-dimensional binary n-cube, sometimes called the 'hypercube, is a graph of 2d ver- 
tices, each numbered with a distinct positive integer less than 2d-1, with an edge 
between two vertices if and only if'the Hamming distance (the number of bits that 
differ) between the binary repksentation of their vertex numbers is equal to one. With 
the recent advent in parallel computing, the hypercube has become a very popular 
topology for building multiprocessor parallel computers, with the vertices correspond 
to processors and the edges correspond to communication channels. Part of the reason 
often quoted for this choice of !opol9gy is the fact that many other topologies, such as 
meshes, trees, pyramidsand butterflies, are embeddable in the binary n-cube [7]. By 
this we mean the graphs representing these other topologies can be mapped onto the 
binary n-cube graph with small dilation (the relative increase in the distance between 
vertices) and expansion (the relative increase in the total number of vertices) [6]. In 
practice, this implies that computations involving data flow graphs taking the form of 
the previously mentioned topologies can be carried out with minimum communication 
overheads on binary n-cube cgmputers. 

Unfortunately, what is often not appreciated is the fact that different graphs require 
different mappings. Moreover, in applications where the same data set must be 
operated on by more than one algorithm, it is possible that the optimal mappings for 
the hdividual algorithms are not compatible .wit& one another. What is ideal for one 
could be disasterous for the others. 

The main goal of this article is to point out one such example involving the FFI' 
butterfiy and the nearest neighbor mesh. The binary n-cube is an ideal FiT' machine. 
However, the usual mapping for Ff;T is quite bad for peforming nearest neighbor 
computations on a mesh, as we shall show later. This poses a dilemma in applications 
in which both FFI' and NN computations are required on the same data, such as in 
algorithms for solving the partial differential equations of fluid dynamics. We shall 
show that a particular mapping which is ideal for the NN mesh, namely one employing 
the binary reflected Gray code (BRGC), is also suitable for FFI' computations. If the 
data is mapped onto the cube using this mapping, then FFTs can be performed on the 
same data with data transfers limited to at most two vertices apart. That is, the BRGC 
mapping maps the FFT butterfly onto the cube with dilation bounded above by 2. 
Moreover, this property is independent of the size of the data array. We also derive 
a model for the communication.cost which can be used to decide which mapping 
minimizes the communication cost iq -a particular application and whether a conversion 
between the two mappings is costeffective. 

The BRGC possesses a special property, not shared by other Gray codes, which is very 
useful in many algorithms for solving partial differential equations. The idea of 
exploiting this property for FiT's on hypercubes seems to have occurred independently 
to several other researchers. For example, this possibility was mentioned by Johnsson 
in [ll], although the context did not arise within NN-mesh computations. 

3.. 
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Chamberlain [lo] also pointed out the advantage of using the BRGC mapping for 
mesh-FFTs and performed some numerical experiments on the Intel iPSC. He did not 
derive a timing model nor did he consider the conversion between the two mappings. 
We will compare 8ur model to his timing results in this paper. 

In section 2, we review the FFT and its optimal mapping onto the binary n-cube. The 
mapping for the NN mesh is discussed next in section 3. The incompatibility of these 
two mappings is explained in section 4. The use of the BRGC for FFT is discussed in 
section 5. In section 6, we present the conversion algorithm and in section 7 we 
briefly discuss extensions to larger problems. We derive the communication cost 
model in section 8 and compare this to the timing results of Chamberlain. We close 
with some remarks"in section 9. We shall restrict our discussions to the radix-2 FFT 
algorithm. I\ 1 ,  

2. The FFT Mapping 

The data flow graph for the FFT is usually referred to as the "butterfly", an example of 
which is shown in Fig. 1 for an array of size 8. Both the decimation in time and 
decimination in frequency form of the FFT algorithm has the same data flow graph. 
More generally, the data flow for an array of size 2d can be described through the 
binary representation of the indices of the array elements. Let the array elements be 
x i ,  where the index j ranges from 0 to 2d-1. These array elements are updated at 
each of d stages of the computation. At the i-th stage of the computation, the array 
element with index j must communicate with another element with index k, whose 
binary representation differs from that of j in the i-th most significant position. On a 
hypercube, the natural mapping is to map xi to node number j of the cube (see for 
example [2]). To be mathematically precise, let M : I  + N be the class of mapping 
functions, where I denote the set of indices of the array elements and N the set of 
node numbers of the hypercube. Then the FFT mapping f e M is given by 

f W = j .  (1) 
With this mapping, it is easy to see that at every stage of the computation, the neces- 
sary communication will be between neighboring nodes. Moreover, all such communi- 
cations at a given stage can be carried out in parallel. Each stage can be viewed as 
"collapsing" the hypercube in one of its coordinates. In fact, the hypercube is iso- 
morphic to the butterfly of the same dmension. An illustration of this mapping on the 
cube is illustrated in Fig. 2 for the case d = 3. 

Note that after the completion of the forward transform, the data elements are not 
arranged in the natural order. Rather, they are in what is known as bit-reversed order. 
This is unimportant if the inverse transform of the data array is to be computed next, 
perhaps after some computations on the transformed array itself, which is typical in 
many applications. If needed, the array elements can be permuted into natural order in 
d steps with only nearest neighbor communication by reversing the steps of the 
butterfly [8]. 
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3. The NN Mesh Mapping I. , i ' * r  

T-pt 

Another very common data flow graph is the nearest neighbor (") mesh, which 
occurs naturally in the solution of partial differential equations. We shall limit our dis- 
cussion here to one dimensional meshes, since higher dimensional meshes can be 
easily built from tensor products of one dimensional onesu]. If the array elements are 
denoted by x i ,  then the NN-mesh graph with the xi's as vertices contains all edges 
connecting a given vertex xj with its nearest neighbors on the mesh. In one dimen- 
sion, these are the two vertices and xi+l. (Throughout this paper, all indices are 
to be taken modulo 2'?, where d i s  the dimension of the hypercube.) 

It is well-known that the "-mesh graph with 2d vertices can be mapped into a d -  
dimensional hypercube with no dilation or expansion via Gray codes. We shall review 
this construction briefly. 

A d-dimensional Gray code is,. a sequence of 2d distinct d-bit numbers 
Gd = [gO,gl,...,g;r'-l], with the property that the Hamming distance between any two 
consecutive (cyclically) members of the sequence is equal to one. For example, 

G3=[ O00,001,011,010, 110, 111, 101, 1001 

is a 3-dimensional Gray code. There are many efficient algorithms for generating 
Gray codes [a. OR the other hand, Gray codes are not unique. For example, the fol- 
lowing is a Gray code different from G3: 

(3) H 3  = i 000, mi, uii, 111, 101, 100, iio,o10]. 

The natural mapping rn EM for h e  hT-mesh to a d-dimensional hypercube is 

m Cikgj, (4) 
where gj is the j-th member,of a d-dimensional Gray code. Due to the defining pro- 
perty of Gray codes, with this mapping all nearest neighbors on the mesh are mapped 
onto nodes on the hypercubes at distance one apart. It is important to note that any 
d-dimensional Gray code will work. Figure 3 shows the mapping rn for a 3- 
dimensional hypercube using the Gray code G3. The arrows indicate the Hamiltonian 
circuit through the hypercube formed by the mesh. 

I -1 
J 

4. The Incompatability Of the FFT and the NN-Mesh Mappings 

It appears that the mapping f is ideal for mapping data onto the hypercube for fast 
Fourier transforms - the data flow graph of the FFI' is mapped directly into the hyper- 
cube with no dilation or expansion. Similarly, the mapping rn is ideal for mapping 
data onto the hypercube for NN-mesh computations. Unfortunately, the mappings f 
and rn required for each kind of computation are different! This creats a potential 
problem in applications where the same data must be operated on by both the FFT and 
the NN-mesh algorithms. In fact, the most natural mapping for the FFT' algorithm, 
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namely f ,  turns outLto be inefficient for NN-mesh computations. This is directly 
related to the following property of the hypercube. 

I ._ 

Theorem 1. In a d-dimensional hypercub, the maximum Hamming distance between 
nodes with consecutive node numbers i s  equal to d .  

Proof. It can be verified that dist(2d;'-1 , 2d-')=d. 

The practical significance of the above theorem is that if the data array xi is mapped 
onto the hypercube using the FFT mapping f ,  then a nearest neighbor computation on 
the same data array requires communication over a distance d for some nodes. For 
higher dimensional hypercubes, this may cause a significant reduction in the efficiency 
of algorithms using the nearest neighbor data flow graph. 

Note that the Hamming distance between the two specific neighbors on the NN-mesh, 
namely node 2d-1-1 and node 2d-', is equal to d ,  the diameter of the hypercube, 
which is the maximum distance between any two nodes on the hypercube. Thus, as far 
as the NN-mesh computation is concerned, the FFT mapping f is the worst possible 
mapping. 

I 

*It 

Applications employing both the FFI' and the NN-mesh data flow graphs are very 
common, especially if they involve the solution of partial differential equations. Com- 
putational fluid dynamics is one such example. A finite difference discretization of the 
Navier Stokes equation often produces a nearest neighbor stencil. Thus the NN-mesh 
mapping is natural for computation of residuals. On the other hand, if a spectral 
method or a fast Poisson solver is used to solve the difference equations, then the FFT 
mapping is called for. The most natural mapping for one operation is inefficient for the 
other. 

A natural solution to this dilemma is to rearrange the data before the execution of each 
algorithm according to the most natural mapping for that algorithm. This may be cost 
effective if the algorithm is to be executed many times over between data rearrange- 
ments. However, there is still a cost for such rearrangements and it would be prefer- 
able to employ a mapping that is almost optimal for both algorithms, thus avoiding 
any unnecessary data movements. We shall show in the next section that this is possi- 
ble. 

5. The Binary Reflected Gray Code Mapping 

We have shown iin the last section that the natural FFT mapping f is not suited for 
NN-mesh computations. A natural question at this point is whether the natural NN- 
mesh mapping m is suited for FFT computations. We shall show in this section that 
the answer to this question is affirmative, provided we choose the mapping m in a spe- 
cial way. 
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Recall that the mapping m is defined in terms of Gray codes. Since Gray codes are 
nonunique, so is the mapping m. For NN-mesh computations, it does not matter which 
of the many possible mappings for rn we use. It turns out, however, that many of 
these allowable mappings for m are unsuitable for FFT computations. Fortunately, and 
somewhat surprisiigly, one can always find a mapping m that is also suitable for 
FFI’s. This is precisely the mapping m defined by a special Gray code, namely the 
Binary Reflected Gray Code (BRGC), as we shall show. 

The BRGC can be recursively defined as follows: 

Bi+l= [ OB,, lB;], - (6) 
where OBi denotes&e sequence’ obtained by prefixing each member of Bi by 0 and B; 
denote the sequence obtained by reversing the order of Bi. The first few BRGC’s are 
shown below: 

B ,  = [ 00, 01, 11, 101 (8) 

B3 = [ OOO, 001,011,010, 110, 111, 101, loo] (9) 

B 4 = [oooO,OOO 1,001 1,0010,Ol 10,011 1 ,O 10 1,0100, 

1100,1101,1111,1110,1010,1011,1001,1000]. (10) 

It is easy to prove by induction that Bi as defined above are Gray codes. One simply 
observes that in Gi+l, if a neighboring pair of members lie completely in the first or 
the second half, then the Hamming distance between them is the same as that between 
the corresponding members of G i ,  which by induction is equal to one; and if the pair 
“straddles” the two halves, then they also differ by one bit because they are obtained 
from the last member of Gi by prefixing a 0 and a 1. 

What distinguishes the BRGC from other Gray codes is the following property. 

Theorem 2. Let Bd=[ bo, b l ,  ..., by-1] be a d-dimensional BRGC, then for O I ~ C ~ ~ ,  

where all subscripts are to be taken modulo 2d. 

Proof. A proof can be found in [4]. 

The above theorem states that if we take an arbitrary member bi of the BRGC B d ,  
then it is at a distance one away from its neighbor bi+l (the case j = 0, which follows 

iJ 

, a 1  

. -  . .  E- 
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directly from that fact that Bd is a Gray code), and, more importantly, that if one takes 
strides of increasing powers of 2 from bi (the case j > 0), then the distance remains 
exactly 2, no matter how large the stride 'or the dimension of the BRGC is. This 
important property of the BRGC can be viewed as a property of a regular global con- 
nection between the members of the BRGC. Many algorithms can take advantage of 
this global connectivity, such as cyclic reduction. algorithms for solving mdiagonal 
linear systems [3] and multigrid algorithms for solving partial differential equations 
[I]. 

We emphasize that not every Gray code possess this very useful property. For exam- 
ple, the following 4-dimensional Gray codes does not: 

%4 = [oooo;oool,~oi 1,0010,0110,011 1,0101,1 101, 

1111,1110,1010,1011,1001,1000,1100,0100], 

because dist (0000,1111) = 4. 

It is interesting to note that the BRGC happens to be the most commonly used Gray 
code in the literature for mapping "-meshes onto hypercubes, although the global 
connectivity property stated in Theorem 2, which is relatively little known, is seldom 
the reason for this choice. 

To see that this property is also useful for FFT's, we note that the FFT butterfly 
involves pairs of array elements separated by strides of diminishing powers of 2 and 
thus if the array elements are mapped to the hypercube using a BRGC, then the com- 
munications occur between nodes at most a distance two apart. This leads us to the 
following theorem. 

Theorem 3. The FFT butterfly graph with 2d vertices is mapped into the d -  
dimensional hypercube with no expansion and with dilation bounded above by 2 under 
the mapping r e  F defined by r ( j )  = b j ,  where bj is the j-th member of the d -  
dimensional BRGC B d  . 
Proof. Recall that at each stage of the FFI' computation, the necessary communica- 
tions are between pairs of array elements whose indices differ in exactly one bit in 
their binary representations. It is easy to verify that if it is the i-th least significant bit 
that differs, then the array elements are at a stride of 2j-l apart. Under the mapping r ,  
the nodes where they reside are at a distance at most 2 apart, due to the above men- 
tioned property of'the BRGC: '' 

It is easy to verify the above iesult for the case d = 3 as illustrated in Figure 3. (Note 
that G3 is a BRGC.) For example, the element x o  communicates with x4 at the fist 
stage of the FFT and with x 2  at the second stage, both at distance 2 away. At the final 
stage, it communicates with x i  which is distance 1 away. 

.* 

.'I 
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6. Conversion Between the BRCC and FiT Mappings 

As mentioned earlier, one can consider rearranging the data before the execution of 
each algorithm according to the most natural mapping for that algorithm, especially if 
the algorithm is to be executed many times. In this section, we shall present an algo- 
rithm, adapted from one given by Johnsson [ 111, for accomplishing such a conversion 
between the FFI' and the NN-mesh mappings. 

We shall consider converting from the BRGC mapping to the FFI' mapping. Conver- 
sion in the other direction can be performed by reversing the steps. 

Lemma. A BRGC mapping can be converted to a FFT mapping in d-1 edge disjoint 
exchanges in a d-dimensional hypercube. 

Proof [ll]. The proof is by induction and is constructive. The lemma can be verified 
to be true for the lcube where no exchanges are necessary. Assume it is true for a k- 
cube. For a (k+l)-cube, the BRGC maps the data xi 's to the processors 

I .  : I  

where the bi's are the k-dimensional BRGCs. The first half of the data is in the k-  
dimensional subcube with leading bit 0, mapped according to the k-dimensional 
BRGC. Ey the inducrion h;.poC!esis, they can be converted to the r"FT mapping by 
k-1 edge disjoint exchanges. The second half of the data in the subcube with leading 

pairwise edge disjoint exchanges between the pairs (1b2~-1,1b~),(lb~t, ,1bl) etc., 
which corresponds to an exchange in the leading bit of the subcube, the data can be 
brought into a confiepation corresponding to a mapping by the k-dimensional BRGC. 
By the induction hypothesis, a further k-1 edge disjoint exchanges completes the 
conversion, making a total of k such exchanges. 

hit 1 rnzpped zccnfinop tQ ref?r& k-fimensinnd BRGC- PeTFnmjng p - 1  

The algorithm for the conversion can be summarized as follows. Let the binary 
representation of the node number of a particular node be i = ioil - - id-l. The algo- 
rithm consists of d-1 exchanges. At the j-th stage, if ij=l then the data in that node 
is exchanged with the data in the neighboring node in the (j+l)-th dimension. 

7. Larger Problems 

All our mappings and algorithms extend straighforwardly to situations where there are 
more data elements than the ndmber of nodes. Suppose that we have 2" data and a 2d 
cube. We divide the data array into 2d equal parts, with consecutive 2"6 elements 
grouped together into blocks:. Then each blcok of elements can be mapped onto the 
cube using any one of the mappings presented earlier. 
FFT, each block of elements must be communicated to 
subsequent n -d stages, no internode communications 

l+?"LI, ; '# 

For the first d stages of the 
a neighboring node. For the 
are needed. For NN-mesh 
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computations, only a boundary data element needs to be communicated. 

Finally, higher dimensional meshes can be mapped using tensor products of one 
dimensional mappings [1,4,7,11]. The mapping for a point in the mesh is obtained by 
concatenating the binary representation of the one dimensional mappings of each of its 
coordinates. Since the FFI' and the NN-mesh data flow graph in each coordinate direc- 
tion is mapped into subcubes, all properties of the one dimensional mappings are 
preserved. The conversion algorithm can also be extended by applying the one dimen- 
sional version in each coordinate in succession. 

*.A 

8. Timing Analysis 

In this section, weshall give a perfo&ance analysis for the various algorithms that we 
have given earlier. We shall consider a one dimensional data array with 2n elements 
on a d-cube, mapped in groups of q = 2"" consecutive elements as described in the 
last section. We shall let s ,  c denote respectively the startup time for internode com- 
munication and the communication rate per data element. We shall also assume 
bidirectional communication over the same channel and therefore an exchange actually 
takes the same time as performing just one send. 

8.1. Timing for FFT 

We first consider the FFI' computation. Let a denote the computational time at each 
node at each stage of the FFT computation, Then the time for an FFT on the array is 
given by 

Tfft = qn a+(d-l)(s+qc)&t(s+qc) 

where 6 = 1 under the FFT mapping f and 6 = 2 under the BRGC mapping r .  The 
last term on the right reflects the fact that the last stage of the FFT involves only 
nearest neighbor communication under either mapping. For the FFI' mapping, models 
similar to ours have been used by Swarztrauber [9] and Walton [12]. 

Note that the computational time decreases with d while the communication time may 
increase with d .  Thus an optimal value of d can be found which minimizes the paral- 
lel execution time. Swarztrauber [9] has carried out a similar analysis for the usual 
FFI' mapping f and he found that, with the optimal number of processors, the com- 
munication time actually dominates the computational time. It is therefore important 
to consider communication effiqient mappings of the data. With the BRGC mapping, 
the optimal value. of d is lower than with the FFI' mapping because the communica- 
tion is more costly. In Figure 4, we plotted the times for a 1024-point FFT (n=10) 
using a set of machine parameters considered by Swarztrauber [9]. It is seen that with 
the optimal values of d ,  communication times dominate the computation times. How- 
ever, for a large range of values of d less than the optimal values, the communication 
times are significantly lower than the computational times. In other words, for large 
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values of n / d ,  relatively high efficiencies can be achieved, a fact also observed by 
Walton [12]. It must be emphasized that perfect efficiency cannot be achieved how- 
ever large nld is because the ratio of computation time to communication time does 
not tend to zero. Finally, it can be seen from the plots that for large values of n l d ,  
the times for the BRGC mapping is only slightly higher than that for the FFI' map- 
ping. The conclusion is that for an efficient FFT computation, the overhead of the 
BRGC mapping over the FFT mapping is not significant. 

Next, we compare our model to the timing results obtained by Chamberlain [lo] on 
the Intel iPSC for a 4096-point FFT using both the FFI' mapping and the BRGC map- 
ping. These results ( I  ax tabulated in Table 1. 

', '' 

Due to imperfect load balancing, some nodes finishes before others and the two values 
given in the table are for the fastest processor and the slowest processor. To compare 
with our model, we have to use a reasonable set of machine parameters. For the arith- 
metic time a ,  we took the single processor time and divided that by qn, resulting in a 
value of a 4 . 5 7 5  milliseconds. This accounts for the actual arithmetic speed achieved 
with the compiled code (versus the peak flops rating of the arithmetic processor.) For 
the communication parameters s and c ,  we used the timing results obtained at Yale by 
S a i d  [13]: a starhp cost of 6 milliseconds and a transfer rate of 1 microsecond per 
byte and unidirectional channels. (These figures are for the first iPSC systems 
delivered in late 1985. Intel has since improved the communication timing.) This 
translates to the values s=12 milliseconds and c=16 microseconds for 32-bit numbers. 
Using this set of machine parameters,' the predicted times for the model are then com- 
puted for various v'alues of d and compared with the averaged values in Table 1. (This 
is a fair comparison because our model does not take into account the load imbalance 
which caused the spread in the timings in Table 1.) The speedup factors are tabulated 
in Table 2 and plotted in Figure 5. The model agrees rather well with the timing 
results. - 

-.I 

X' .- 
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Table 2. Speed up comparison between model and Chamberlain experiment. 

8.2. Timing for the Conversion Algorithm 

Next we consider the cost of the conversion algorithm between the BRGC mapping 
and the FFT mapping. The algorithm in section 6 can be extended in two ways to the 
case of 4 data elements per node. The first method is simply to send the 4 elements 
at each step instead of one. The time for this is 

' L  

T, = (d-l)(s+cq). 

The second method is to pipeline the data elements in each send [4,11]. In othe 
words, each send consists of only one element but each node will send 4 times. The 
motivation is that the processors will be kept busy more often because some sends can 
be overlapped. Since a total of q+d-2 exchanges are needed, the time for this method 
is 

Tcp = (4+d-2 ) (~+~) .  

By comparing the two, we find that T, < Tcp if SIC > d(1-1lq)-1. If q > l  then this 
condition reduces to s l c  >d -1. For most commercially available hypercubes, 
slcwd-1 and therefore the non-pipelining method is faster. The main reason is that 
the pipelining method has more startups which are costly on these machines. From 
now on we shall only use T,.  

f .  1 

_.  _ .  

83 .  Comparison of the Mappings 

We now consider the question of which mapping is better for a given application and 
whether the conversion to the optimal mapping is worthwhile before we execute an 
algorithm. 

Consider the situation in which we have an application which consists of k FFTs then 
followed by I "-mesh computations. We shall consider the communication time of 
the various possibilities. We assume that one NN-mesh communication consists of 
sending one boundary data to a neighbor. 
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If we use the BRGC mapping for both computations with no conversion, then the 
communication time is given by 

Tb = I (S+C )+k (M-l)(~+qc ). 

The factor (2d-1) in the second term on the right corresponds to a dilation of 2 for the 
first d-1 steps of .the butterfly and a dilation of 1 for the final step. 

If we use the FFI' mapping with no conversion, the time is 
Tf = Id (S +C )+kd (S + q ~  ). 

The extra factor of d in the first term corresponds to the dilation of mapping the NN- 
mesh graph to the hypercube using the FFT mapping. 

If we use the optimal mapping for each computation and convert between them, the 
time is 

- T, = I(s+c)+2(d-l)(s+qc)+kd(s+qc). 
The second term in the right hand side corresponds to the conversion time. 

For given values of k and I ,  the above timing formulas can be used to determine 
which mapping/conversion combination has the least communication cost. We have the 
fdlowing geneid results. 

Theorem 4 

T, < Tb i f k  > 2 for any 1 ,  

T, < Tf if I > 2(s+qc)/(s+c) for any k, 

Tb < Tf if Ilk > (s+qc)/(s+c). 

We shall consider two extreme situations here. The first case is where 1 is much 
larger than k ,  in other words a primarily NN-mesh computation. In particular, if 
Ilk > (s+qc)/(s+c), then Tb < Tf and so the BRGC mapping should be used for the 
NN-mesh computations. If in addition k>2,  then T, < Tb . In other words, we should 
convert the data to the FFT mapping if we are going to perform more than two FFTs. 
In many applications, an FFT is immediately folllowed by an inverse FFT and our 
result shows that in these cases it is not necessary to convert the data to the FFI' map- 
ping. 

The second situation is where k is much larger than 1 which means that we have a pri- 
marily FF"' computation. In particulai, if Ilk < (s+qc)/(s+c), then the FFI' mapping 
should be used for the FFT computations. Moreover, if 1 > 2(s+qc)/(s+c), then 
T, < Tf, and we, should convert to the BRGC mapping for the NN-mesh computa- 
tions. 

. 
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9. Concluding Remarks 

A typical parallel program contains several algorithms working on the same data. One 
of the main purposes of this article is to emphasize the need to go beyond studying the 
optimal implementation of, the individual algorithms but to look at the whole collection 
as a whole. The reason is simply that what is best for one algorithm may not be 
optimal for the others. We have shown in this article one such example involving the 
implementation of the FFT algorithm and the nearest neighbor mesh algorithm on 
hypercubes. We demonstrated that the natural FFT mapping of data onto the hyper- 
cube is not perfectly suited for NN-mesh computations. On the other hand, the natural 
NN-mesh mapping using the special BRGC is quite suitable for FFI' computations. 

The optimal choice of a mapping depends on many factors, such as the frequency the 
algorithms are to be executed and the ratio of the arithmetic speed to the communica- 
tion speed. Moreover, it may be cost effective to convert the data into the optimal 
configuration for a certain algorithm before executing it. 

Since the BRGC mapping is also ideal for other algorithm for computations on 
meshes, such as cyclic reduction and multigrid algorithms, we feel that perhaps it 
should be considered in addition to the natural FFT mapping in applications involving 
FFT computations. 
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Fig. 2 The Natural 'FFT Mapping .for the Hypercube 

The x.'s I denote array eler ents, the integers node numbers. 
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Fig. 3 The Gray Code NN-Mesh Mapping for the Hypercube 

The x.’s I denote array elements, the integers node numbers. 
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